Comparing estimators of the galaxy correlation function

نویسنده

  • Helga Stoyan
چکیده

We present a systematic comparison of some usual estimators of the 2–point correlation function, some of them currently used in Cosmology, others extensively employed in the field of the statistical analysis of point processes. At small scales, it is known that the correlation function follows reasonably well a power–law expression ξ(r) ∝ r−γ. The accurate determination of the exponent γ (the order of the pole) depends on the estimator used for ξ(r); on the other hand, its behavior at large scale gives information on a possible trend to homogeneity. We study the concept, the possible bias, the dependence on random samples and the errors of each estimator. Errors are computed by means of artificial catalogues of Cox processes for which the analytical expression of the correlation function is known. We also introduce a new method for extracting simulated galaxy samples from cosmological simulations. Subject headings: methods: statistical; galaxies: clustering; large–scale structure of Universe Email:[email protected] Email: [email protected] Email: [email protected] Email: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration Weighting to Compensate for Extreme Values, Non-response and Non-coverage in Labor Force Survey

Frame imperfection, non-response and unequal selection probabilities always affect survey results. In order to compensate for the effects of these problems, Devill and Särndal (1992) introduced a family of estimators called calibration estimators. In these estimators we look for weights that have minimum distance with design weights based on a distance function and satisfy calibration equa...

متن کامل

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

اندازه‌گیری نمایه عمق نوری خوشه‌های کهکشانی با استفاده از اثرسونیائف زلدوویچ جنبشی

baryonic matter distribution in the large-scale structures is one of the main questions in cosmology. This distribution can provide valuable information regarding  the processes of galaxy formation and evolution. On the other hand, the missing baryon problem is still under debate. One of the most important cosmological structures for studying the rate and  the distribution of the baryons is gal...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

Shrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata

Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999